Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas

نویسنده

  • W. W. Heidbrink
چکیده

Superthermal energetic particles EP often drive shear Alfvén waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfvén instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfvén waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfvén eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfvén eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfvén instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P is most important. Once a mode is driven unstable, a wide variety of nonlinear dynamics is observed, ranging from steady modes that gradually saturate, to bursting behavior reminiscent of relaxation oscillations, to rapid frequency chirping. An analogy to the classic one-dimensional problem of electrostatic plasma waves explains much of this phenomenology. EP transport can be convective, as when the wave scatters the particle across a topological boundary into a loss cone, or diffusive, which occurs when islands overlap in the orbital phase space. Despite a solid qualitative understanding of possible transport mechanisms, quantitative calculations using measured mode amplitudes currently underestimate the observed fast-ion transport. Experimentally, detailed identification of nonlinear mechanisms is in its infancy. Beyond validation of theoretical models, the future of the field lies in the development of control tools. These may exploit EP instabilities for beneficial purposes, such as favorably modifying the current profile, or use modest amounts of power to govern the nonlinear dynamics in order to avoid catastrophic bursts. © 2008 American Institute of Physics. DOI: 10.1063/1.2838239

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle Transport and Electron Density Relaxation due to Stochastic Magnetic Fields in the MST Reversed Field Pinch

Particle transport and its effect on the plasma density distribution remains an important, unresolved issue in magnetic fusion plasmas [1]. Fluctuating magnetic fields can arise from global tearing instabilities that often underlie the sawtooth oscillation [2] and lead to plasma relaxation [3]. Furthermore, magnetic fluctuations are also generated by energetic particles associated with non-indu...

متن کامل

Nonlinear interplay of Alfvén instabilities and energetic particles in tokamaks

The confinement of energetic particles (EPs) is crucial in the efficient heating of tokamak plasmas. Plasma instabilities such as Alfvén eigenmodes (AEs) can redistribute the EP population, making the plasma heating less effective and leading to additional loads on the walls. The nonlinear dynamics of toroidicity induced AEs (TAEs) is investigated by means of the global gyrokinetic particle-in-...

متن کامل

AWECS: A Linear Gyrokinetic δf Particle-in-Cell Simulation Code for the Study of Alfvénic Instabilities in High-β Tokamak Plasmas

A 1-D linear gyrokinetic code called awecs is developed to study the kinetic excitation of Alfvénic instabilities in a high-β tokamak plasma, with β being the ratio of thermal to magnetic pressure. It is designed to describe physics associated with a broad range of frequencies and wavelengths. For example, awecs is capable of simulating kinetic ballooning modes, Alfvénic ion-temperature-gradien...

متن کامل

An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfvén waves in burning plasmas

Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an extended version of hyb...

متن کامل

Long-Term Landau-Fluid Simulation of Alfvén Eigenmode Instabilities∗)

An energetic particle Landau-fluid closure model (TAEFL) is applied to a case where both RSAE (Reversed Shear Alfvén Eigenmode) and TAE (Toroidal Alfvén Eigenmode) modes are destabilized by beam ions. The nonlinear evolution of the coupled modes are followed for about 104 Alfvén times under the simplifying assumptions that a density source is present that exactly balances the quasi-linear fast ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008